非対称構造を有する

多分岐ポリイミドーシリカハイブリッドの合成と特性

京都工繊大 〇原口征也・三木真湖・山田保治

本研究では、非対称構造を有する多分岐ポリイミド・シリカハイブリッド(HBPI-SiO₂ HBD)を合成し、多分岐化、末端構造の違いおよびハイブリッド化の影響を検討した。 DA-HBPI-SiO₂ HBD に比較し、AM-HBPI-SiO₂ HBD は高い寸法安定性を示すことが 分かった。また、いずれのサンプルにおいても TMOS 系ではシリカ含有量の増加に伴 い CO₂/CH₄ 選択性が上昇したことから、シリカとのハイブリッド化により、新たに形 成された空孔は CO₂/CH₄ 分離に有効なサイズであることが示唆された。

1.緒言

芳香族ポリイミドは、熱的、機械的および電気的特性等に優れた高性能・高機能材料 である。当研究室ではこれまで、非対称構造を有するトリアミンモノマー 2,4,4-(triaminodiphenyl)ether(TADE)を用いて酸無水物末端多分岐ポリイミド (DA-HBPI)およびそのシリカハイブリッド(DA-HBPI-SiO₂ HBD)を合成し、その諸特 性について報告してきた。本研究では、モノマー組成比を調整しアミン末端多分岐ポリ イミド(AM-HBPI)およびシリカハイブリッド(AM-HBPI-SiO₂ HBD)を合成し、分子鎖 末端構造の違いが諸特性に及ぼす影響について検討した。

2.実験

DMAc に溶解したトリア ミンモノマーTADE に、予 IIN めDMAc に溶解した酸二無 水 物 モ ノ マ ー 4,4'-(hexafluoroisopropylid ene)diphthalic anhydride

(6FDA)を徐々に加え 25℃で 3 時間攪拌した後、シランカップリング剤 3-(triethoxysilyl) propyl succinicanhydride(TEOSPSA)を加え更に1時間攪拌し、シラ ン末端多分岐ポリアミド酸を合成した。この反応溶液に、任意量の tetramethoxysilane(TMOS)又は methyltrimethoxysilane(MTMS)および水を加えて 24時間攪拌した後 PET シート上にキャストして乾燥し、得られた膜を窒素雰囲気下で 熱イミド化し、AM-HBPI-SiO₂HBD 膜を調製した。また、同様の手法でジアミンモノ マー4,4'-diaminodiphenylether(ODA)を用い直鎖ポリイミド・シリカハイブリッド PI-SiO₂HBD 膜を調製した。得られた膜について諸特性評価を行った。

3.結果と考察

3.1. FT-IR 測定

各サンプルのイミド化の進行およ び、ハイブリッド化の進行を確認す るために、FT-IR 測定を行った。得 られた FT-IR スペクトルを Figure 2 に示す。いずれのサンプルにおいて もポリアミド酸に特徴的なピーク

Figure 2 FT-IR spectra of HBPI-SiO₂ HBD films.

(v c=o; 1650cm⁻¹付近) は見られず、

ポリイミドに特徴的なピーク ($\nu \operatorname{asc=0}$; 1780cm⁻¹、 $\nu \operatorname{sc=0}$; 1720cm⁻¹、 $\delta \operatorname{c=0}$; 720cm⁻¹) が観測されたことから、イミド化の進行が確認できた。また、DA-HBPI-SiO₂ HBD で は酸無水物末端に特徴的なピーク ($\nu \operatorname{c=0}$; 1850cm⁻¹) が観測されたのに対し、 AM-HBPI-SiO₂ HBD ではアミン末端に特徴的なピーク (ν_{N-H} ; 3400cm⁻¹) が観測さ れたことから、末端構造を設計通り制御できていることが確認できた。また、シリカ含 有量の増加に伴い Si-O-Si 結合に基づくピーク ($\nu_{Si-O-Si}$; 950-1100 cm⁻¹) の増大が見 られ、sol-gel 反応の進行によるシリカネットワークの形成が確認された。さらに、 MTMS 系ではメチル基に由来するピーク (ν_{C-H} ; 2980cm⁻¹) が観測された。

3.2. 紫外 - 可視光透過率測定

紫外 - 可視光透過率測定より得られた各サ ンプルの波長 600nm における、膜厚補正 (20μm)後の光透過率をシリカ含有量に対し てプロットした結果を Figure 3 に示す。 PI-SiO₂ HBD と比較すると DA-HBPI-SiO₂ HBD はシリカ含有量 30wt%でも高い光透過 率を維持したことから、シリカドメインが可 視光の光散乱に影響を及ぼす程の大きさには 凝集 していないことが示唆される。 AM-HBPI-SiO₂ HBD は他の系よりも光透過

率が低かった。これは、AM-HBPI-SiO₂HBD は熱イミド化により末端アミノ基が部分 的に熱変性するため、赤茶色に着色していることが原因と考えられる。しかしながら、 AM-HBPI-SiO₂HBD においても光透過率はシリカ含有量の増加に伴い上昇した。これ は、微細なサイズに分散したシリカ成分により単位体積あたりのイミド基密度が低下し たためと考えられる。

3.3. 熱的特性(TG-DTA 測定、TMA 測定、DMA 測定)

TG-DTA 測定より得られた TG 曲線から求めた各サンプルの 5%重量減少温度 (T_d⁵[°C])をシリカ含有量に対してプロットした結果を Figure 4 に示す。PI-SiO₂ HBD と比較すると HBPI-SiO₂ HBD の T_d⁵ は低いことが分かった。これは HBPI-SiO₂ BD は 熱的に不安定である分子鎖末端を多く含有するためと考えられる。次に、DA-HBPI- SiO₂ HBD と比較すると AM-HBPI-SiO₂ HBD のほうが低い T₄⁵を示した。これは、未 修飾アミノ基が熱的に不安定であるためと考 えられる。また、T₄⁵はシリカ含有量の増加に 伴い上昇した。これは、シリカの無機的性質 が付与され、また、シリカネットワークによ り高分子鎖の運動が抑制されることで分解速 度が低下するためと考えられる。

TMA 測定より得られた各サンプルの 100-150℃における線膨脹係数(CTE[ppm/℃])を シリカ含有量に対してプロットした結果を Figure 5 に示す。PI-SiO₂ HBD と比較すると HBPI-SiO₂ HBD の CTE は低いことが分かっ た。これは HBPI-SiO₂ HBD では三次元的に、 高分子鎖間架橋が形成され運動性が強く抑制 されたためと考えられる。次に、DA-HBPI-SiO₂ HBD と比較すると AM-HBPI-SiO₂ HBD の方が低い CTE を示した。これは、AM-HBPI-SiO₂ HBD では末端のアミノ基とイミ ド基の水素結合の影響で高分子鎖の運動性が 抑制されているためと考えられる。また、

Figure 4 5% weight-loss temperatures $(T_d{}^5)$ of HBPI-SiO_2 HBD and PI-SiO_2 HBD films.

Figure 5 Coefficients of thermal expansion (100-150°C) of HBPI-SiO₂ HBD and PI-SiO₂ HBD films.

TMOS系ではいずれのサンプルにおいてもCTE はシリカ含有量の増加に伴い低下した。 これは、ハイブリッド化によりシリカを介した分子間架橋が形成され高分子鎖の運動が 強固に抑制されたこと、また、シリカ自体の低熱膨張性が反映されたことによると考え られる。一方、MTMS系ではシリカ含有量の増加に伴いCTEの値は上昇した。これは、 シリカネットワークがTMOS系ほど強固でなく、また、MTMS 由来の嵩高いメチル基

の存在の影響で高分子鎖のパッキングが阻害 されるため、シリカネットワーク形成による 高分子鎖の運動性の低下を相殺するためと考 えられる。

DMA 測定より得られた各サンプルのガラ ス転移温度(T_g[℃])をシリカ含有量に対し てプロットした結果を Figure 6 に示す。DA-HBPI-SiO₂ HBD と比較すると AM-HBPI-SiO₂ HBD の方が高い T_gを示した。これは、 AM-HBPI-SiO₂ HBD では末端のアミノ基と イミド基の水素結合の影響で高分子鎖の運動

Figure 6 Glass transition temperatures (T_g) of HBPI-SiO_2 HBD films.

性が抑制されているためと考えられる。次に、TMOS 系ではいずれのサンプルにおい てもシリカ含有量の増加に伴い上昇したことから、シリカネットワークによる高分子鎖 の運動性の抑制が示唆された。また、MTMS 系も上昇はするが嵩高いメチル基の影響 上昇の程度は少なかった。

3.5. 気体透過測定

気体透過測定より得られた各サンプル における分離係数 α (CO₂/CH₄) と P(CO₂) の関係を Figure 7 に示す。PI-SiO₂ HBD と比較すると HBPI-SiO₂ HBD の α (CO₂/CH₄)は高い値であった。このことから、 多分岐構造による高分子鎖間の空隙が CO₂/CH₄ 分離に適したサイズに制御されて いることが示唆される。次に、 DA-HBPI-SiO₂ HBD と比較すると AM-HBPI-SiO₂ HBD の方が更に α

Figure 7 CO_2/CH_4 selectivity of HBPI-SiO₂ HBD and PI-SiO₂ HBD membranes plotted against CO_2 permeability coefficient.

(CO₂/CH₄)が高くなっていることから、AM-HBPI-SiO₂ HBD の空隙径のほうが CO₂/CH₄ 分離により適したサイズであることが示唆される。また、いずれのサンプルにおいても TMOS 系では α (CO₂/CH₄)はシリカ含有量の増加に伴い向上したことから、ハイブリッ ド化により新たに形成された空孔は CO₂/CH₄ 分離に有効なサイズであることが示唆さ れた。MTMS 系では嵩高いメチル基により大きなサイズの空隙が形成されると考えられ、 P(CO₂)は上昇するものの α (CO₂/CH₄)はシリカ含有量の増加に伴い大幅に低下した。

4.結論

本研究では、非対称構造を有する多分岐ポリイミド・シリカハイブリッド(HBPI-SiO₂ HBD)を合成し、多分岐化、末端構造の違いおよびハイブリッド化の影響を検討した。 AM-HBPI-SiO₂ HBD は DA-HBPI-SiO₂ HBD に比べ CTE が低く、高い寸法安定性を 示すことが分かった。TMOS 系ハイブリッドではシリカ含有量の増加に伴い、シリカ の無機的性質の付与と三次元架橋によりいずれのサンプルにおいても CTE が低下した。 AM-HBPI-SiO₂ HBD は DA-HBPI-SiO₂ HBD に比べ高い CO₂/CH₄ 選択性を示すこと が分かった。また、TMOS 系ハイブリッドではいずれのサンプルにおいてもシリカ含 有量の増加に伴い CO₂/CH₄ 選択性が上昇したことから、シリカとのハイブリッド化に より、分子鎖間およびシリカーポリマー界面に新たな空孔が形成され、この空孔が CO₂/CH₄分離に有効なサイズであることが示唆された。

5.参考文献

[1] L. M. Robeson, J. Membrane Sci., 62 (1991) 165

[2] L. M. Robeson, J. Membrane Sci., **320** (2008) 390